Web Application Report

This report includes important security information about your web application.

Security Report

This report was created by IBM Security AppScan Standard 8.6.0.1, Rules: 1529
Scan started: 3/4/2013 1:06:45 PM

Table of Contents

Introduction

B General Information
m Login Settings

Executive Summary

Issue Types

Vulnerable URLs

Fix Recommendations
Security Risks

Causes

WASC Threat Classification

Issues Sorted by Issue Type

Blind SQL Injection

Unencrypted Login Request
Cross-Site Request Forgery IEl
Inadequate Account Lockout

Fix Recommendations

Always use SSL and POST (body) parameters when sending sensitive information.
Review possible solutions for hazardous character injection

Decline malicious requests

Enforce account lockout after several failed login attempts

Advisories

Blind SQL Injection

Unencrypted Login Request
Cross-Site Request Forgery
Inadequate Account Lockout

3/4/2013

Introduction

This report contains the results of a web application security scan performed by IBM Security AppScan Standard.

High severity issues:
Medium severity issues:

3
9

Total security issues included in the report: 12

Total security issues discovered in the scan: 37

General Information

Scan file name: ncias-q793-v.nci.nih.gov_48080_cacisweb_20130304

Scan started: 3/4/2013 1:06:45 PM
Test policy: Default
Host ncias-q793-v.nci.nih.gov

Operating system: Unknown
Web server: Apache

Application server: JavaAppServer

Login Settings

Login method:
Concurrent logins:
JavaScript execution:
In-session detection:
In-session pattern:

Tracked or session ID cookies:

Tracked or session ID parameters:

Login sequence:

3/4/2013

Recorded login

Enabled
Enabled
Enabled
wel cone

_utma
ut ne

JSESSI ONI D

http://nci
http://nci
http://nci
http://nci
http://nci
http://nci
http://nci
http://nci
http://nci

as-q793-v.
as-q793-v.
as-q793-v.
as-q793-v.
as-q793-v.
as-q793-v.
as-q793-v.
as-q793-v.
as-q793-v.

nci.
nci.
nci.
nci.
nci.
nci.
nci.
nci.
nci.

ni h.
ni h.
ni h.
ni h.
ni h.
ni h.
ni h.
ni h.
ni h.

gov:
gov:
gov:
gov:
gov:
gov:
gov:
gov:
gov:

48080/ caci
48080/ caci
48080/ caci
48080/ caci
48080/ caci
48080/ caci
48080/ caci
48080/ caci
48080/ caci

sweb/ sessi onl nval i d. action
sweb/struts/utils.js

sweb/j _spring_security_check
sweb/ i ndex. action

sweb/ navTop. j sp

sweb/ navLeft.jsp
sweb/ wel cone. j sp
sweb/script/list.js

sweb/ script/resize.js

Executive Summary

Issue Types 1A Toc

Issue Type Number of Issues

2l Blind SQL Injection
Unencrypted Login Request
m Cross-Site Request Forgery
m Inadequate Account Lockout

- 0 N =

Vulnerable URLs B ToC

URL Number of Issues

Root
http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureF TPRecipientAdd.action
http://ncias-q793-v.nci.nih.gov:48080/cacisweb/j_spring_security_check
m http://ncias-q793-v.nci.nih.gov:48080/cacisweb/j_spring_security_logout
m http://ncias-q793-v.nci.nih.gov:48080/cacisweb/logout.action
m http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureEmailRecipientAdd.action
m http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureEmailRecipientList.action
m http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureFTPRecipientList.action
m http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secure XDSNAVRecipientList.action

=S A A A A a NN o

Fix Recommendations @ ToC

Remediation Task Number of Issues

all Always use SSL and POST (body) parameters when sending sensitive information. 2 _
Review possible solutions for hazardous character injection -

1
m Decline malicious requests 8
1

m Enforce account lockout after several failed login attempts

Security Risks A ToC
Number of Issues

all It is possible to view, modify or delete database entries and tables 1

It may be possible to steal user login information such as usernames and passwords 2

3/4/2013 3

[that are sent unencrypted

Itis possible to steal or manipulate customer session and cookies, which might be used 8 _

to impersonate a legitimate user, allowing the hacker to view or alter user records, and to
perform transactions as that user

It might be possible to escalate user privileges and gain administrative permissions over 1 -
the web application

Causes ToC

Number of Issues

il Sanitation of hazardous characters was not performed correctly on user input 1
28 Sensitive input fields such as usernames, password and credit card numbers are 2
passed unencrypted

m Insufficient authentication method was used by the application 8 _

m Insecure web application programming or configuration 1

WASC Threat Classification ToC

Threat Number of Issues

Application Privacy Tests 2
Brute Force 1
Cross-site Request Forgery 8
SQL Injection 1

3/4/2013 4

file:///C:/ProgramData/IBM/AppScan%20Standard/temp/3256/N/A
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/SQL-Injection

[ssues Sorted by Issue Type

H Blind SQL Injection TOC

Issue 1 of 1 TOC

Blind SQL Injection

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureF TPRecipientAdd.action
Entity: secureFTPBean.certificate (Parameter)

Risk: It is possible to view, modify or delete database entries and tables

Causes: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter manipulated from: 1234 to: 1234% and 'f%="f

Reasoning: The test result seems to indicate a vulnerability because it shows that values can be appended to parameter values,
indicating that they were embedded in an SQL query.HEX(OD)HEX(0A)In this test, three (or sometimes four) requests are
sent. The last is logically equal to the original, and the next-to-last is different. Any others are for control purposes. A
comparison of the last two responses with the first (the last is similar to it, and the next-to-last is different) indicates that
the application is vulnerable.

Original Response Test Response (last)
Invalid Token. Please DO NOT use the BACK button of the browser. Invalid Token. Please DO NOT use the BACK button of the browser.
Only use left menu and onscreen buttons. Only use left menu and onscreen buttons.
~
~
Original Response Test Response (next-to-last)

3/4/2013 5

National Cancer Institute USS. National Institutes of Health | www.cancer.gov

Invalid Token. Please DO NOT use the BACK button of the browser.
Only use left menu and onscreen buttons. caClS Administration

vsemame:[
Password:|

RESET LOGIN

H Unencrypted Login Request

Issue 1 of 2 TOC

Unencrypted Login Request

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/j_spring_security_check

Entity: j_spring_security_check (Page)

Risk: It may be possible to steal user login information such as usernames and passwords that are sent unencrypted
Causes: Sensitive input fields such as usernames, password and credit card numbers are passed unencrypted

Fix: Always use SSL and POST (body) parameters when sending sensitive information.
Difference:

Reasoning: AppScan identified a login request that was not sent over SSL.
Original Request

j _user name=caci sadmi n& _passwor d=qwer 1234&submni t =LOG N

Issue 2 of 2 TOC

3/4/2013 6

Unencrypted Login Request

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/j_spring_security_check

Entity: j_password (Parameter)

Risk: It may be possible to steal user login information such as usernames and passwords that are sent unencrypted
Causes: Sensitive input fields such as usernames, password and credit card numbers are passed unencrypted

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan identified a password parameter that was not sent over SSL.
Original Request

j _user name=caci sadmi n& _passwor d=qwer 1234&submi t =LOG N

M Cross-Site Request Forgery H TOC

Issue 1 of 8 TOC

Cross-Site Request Forgery

Severity: [V

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureF TPRecipientAdd.action
Entity: secureFTPRecipientAdd.action (Page)

Risk: It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing
the hacker to view or alter user records, and to perform transactions as that user

Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci . ni h. gov: 48080/ caci sweb/ secur eFTPReci pi ent Li st . acti on
to: http://bogus.referer.ibm com

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original
Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response

3/4/2013 7

Invalid Token. Please DO NOT use the BACK button of the browser. Invalid Token. Please DO NOT use the BACK button of the browser.
Only use left menu and onscreen buttons. Only use left menu and onscreen buttons.

u

Issue 2 of 8 TOC

Cross-Site Request Forgery

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureFTPRecipientList.action
Entity: secureFTPRecipientList.action (Page)

Risk: It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing
the hacker to view or alter user records, and to perform transactions as that user

Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci . ni h. gov: 48080/ caci sweb/ secur eFTPReci pi ent Li st. acti on

to: http://bogus.referer.ibmcom

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original
Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response
Invalid Token. Please DO NOT use the BACK button of the browser. Invalid Token. Please DO NOT use the BACK button of the browser.
Only use left menu and onscreen buttons. Only use left menu and onscreen buttons.

3/4/2013 8

Issue 3 of 8 TOC

Cross-Site Request Forgery

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureEmailRecipientAdd.action
Entity: secureEmailRecipientAdd.action (Page)

Risk: Itis possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing
the hacker to view or alter user records, and to perform transactions as that user

Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci . ni h. gov: 48080/ caci sweb/ secur eEnzi | Reci pi ent Li st . act i on

to: http://bogus.referer.ibm com

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original
Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response
Invalid Token. Please DO NOT use the BACK button of the browser. Invalid Token. Please DO NOT use the BACK button of the browser.
Only use left menu and onscreen buttons. Only use left menu and onscreen buttons.
Issue 4 of 8 TOC

Cross-Site Request Forgery

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secureEmailRecipientList.action

Entity: secureEmailRecipientList.action (Page)

Risk: It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing

the hacker to view or alter user records, and to perform transactions as that user
Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci. ni h. gov: 48080/ caci sweb/ secur eEnmi | Reci pi ent Li st . acti on

3/4/2013 9

to: http://bogus. referer.ibmcom

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original
Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response
Invalid Token. Please DO NOT use the BACK button of the browser. Invalid Token. Please DO NOT use the BACK button of the browser.
Only use left menu and onscreen buttons. Only use left menu and onscreen buttons.
Issue 5 of 8 Toc

Cross-Site Request Forgery

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/j_spring_security_check
Entity: j_spring_security_check (Page)

Risk: It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing
the hacker to view or alter user records, and to perform transactions as that user

Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci . ni h. gov: 48080/ caci sweb/ | ogi nFai | ed. action t0: http://bogus.referer.ibm com
Cookie removed from request: 98647169. 1937696304. 1360601533. 1360601533. 1360601533. 1
Cookie removed from request: 98647169. 1360601533. 1. 1. ut nesr=(di rect) | ut ncen=(di rect) | ut merd=(none)
Cookie removed from request: ClLAEEOA14ACD95E705C474A49626446B

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original
Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response

3/4/2013 10

National Cancer Institute USS. National Institutes of Health | www.cancer.gov National Cancer Institute US. National Institutes of Health | www.cancer.gov

cacls A Home cacIs A

Welcome to caCIS Administration Welcome to caClS Administration

-~
~
Issue 6 of 8 ToC
Cross-Site Request Forgery
Severity:
URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/secure XDSNAVRecipientList.action
Entity: secureXDSNAVRecipientList.action (Page)
Risk: It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing

the hacker to view or alter user records, and to perform transactions as that user
Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci . ni h. gov: 48080/ caci sweb/ secur eXDSNAVReci pi ent Li st . acti on

to: http://bogus. referer.ibmcom

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original
Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response
Invalid Token. Please DO NOT use the BACK button of the browser. Invalid Token. Please DO NOT use the BACK button of the browser.
Only use left menu and onscreen buttons. Only use left menu and onscreen buttons.

3/4/2013 11

Issue 7 of 8 TOC

Cross-Site Request Forgery

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/j_spring_security_logout
Entity: j_spring_security_logout (Page)

Risk: It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing
the hacker to view or alter user records, and to perform transactions as that user

Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci . ni h. gov: 48080/ caci sweb/ navTop. jsp tO: http://bogus.referer.ibm com

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original
Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response

National Cancer Institute U.5. National Institutes of Health | www.cancer.gov National Cancer Institute U.S. National Institutes of Health | www.cancer.gov

caClS Administration caClS Administration

User successfully logged ou. User successfully logged out.

usemame:| usemame:|
passwore:| passwora:|
~
~
Issue 8 of 8 TOC

Cross-Site Request Forgery

Severity:

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/logout.action
Entity: logout.action (Page)

Risk: It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing
the hacker to view or alter user records, and to perform transactions as that user

Causes: Insufficient authentication method was used by the application

Fix: Decline malicious requests

Difference: Header manipulated from: http://ncias-q793-v. nci . ni h. gov: 48080/ caci sweb/ navTop. jsp tO: http://bogus.referer.ibm com

Reasoning: The test result seems to indicate a vulnerability because the Test Response (on the right) is identical to the Original

3/4/2013 12

Response (on the left), indicating that the login attempt was successful, even though it included hazardous characters.

Original Response Test Response
National Cancer Institute U.S. National Institutes of Health | www.cancer.gov National Cancer Institute U.S. National Institutes of Health | www.cancer.gov
caClS Administration caClS Administration
User successfully logged out. User successfully logged out.
Username: Username:
Password: Password:

M Inadequate Account Lockout

Issue 1 of 1 TOC

Inadequate Account Lockout

Severity: m

URL: http://ncias-q793-v.nci.nih.gov:48080/cacisweb/j_spring_security_check

Entity: j_password (Parameter)

Risk: It might be possible to escalate user privileges and gain administrative permissions over the web application
Causes: Insecure web application programming or configuration

Fix: Enforce account lockout after several failed login attempts

Difference: Cookie removed from request: 98647169. 1937696304. 1360601533. 1360601533. 1360601533. 1
Cookie removed from request: 98647169. 1360601533. 1. 1. ut ntsr=(di rect) | ut meen=(di rect) | ut mend=(none)
Cookie removed from request: ' D39ECCB36AAB15BC6077830C83BEC3AF
Parameter manipulated from: quer1234 to: 4ppscan

Reasoning: Two legitimate login attempts were sent, with several false login attempts in between. The last response was identical to
the first. This suggests that there is inadequate account lockout enforcement, allowing brute-force attacks on the login
page. (This is true even if the first response was not a successful login page.)

Test Response (first) Test Response (last)

3/4/2013 13

National Cancer Institute U.S. National Institutes of Health | www.cancer.gov

caCIS Administration Home Logout|

National Cancer Institute U.S. National Institutes of Health | www.cancer.gov

¢aClS Administration

Username:
Password:

3/4/2013

u

Welcome to caClS Administration

14

Fix Recommendations

H Always use SSL and POST (body) parameters when sending sensitive information.

Issue Types that this task fixes

m Unencrypted Login Request

General

1. Make sure that all login requests are sent encrypted to the server.
2. Make sure that sensitive information such as:

- Username

- Password

- Social Security number

- Credit Card number

- Driver's License number

- e-mail address

- Phone number

- Zip code

is always sent encrypted to the server.

H Review possible solutions for hazardous character injection

Issue Types that this task fixes

m Blind SQL Injection

General

There are several mitigation techniques:
[1] Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness or provides constructs that make it easier to avoid.

[2] Strategy: Parameterization

If available, use structured mechanisms that automatically enforce separation between data and code. These mechanisms may be able to provide
the relevant quoting, encoding, and validation automatically, instead of relying on the developer to provide this at every point where output is
generated.

[3] Strategy: Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks.

[4] Strategy: Output Encoding

If you need to use dynamically-generated query strings or commands in spite of the risk, properly quote arguments, and escape any special
characters within those arguments.

3/4/2013 15

[5] Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy: a whitelist of acceptable inputs that strictly conform to
specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively on
detecting for malicious or malformed inputs with a blacklist. However, blacklists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

.Net
Here are two possible ways to protect your web application against SQL injection attacks:

[1] Use a stored procedure rather than dynamically built SQL query string. The way parameters are passed to SQL Server stored procedures,
prevents the use of apostrophes and hyphens.

Here is a simple example of how to use stored procedures in ASP.NET:

' Visual Basic exanple

Dim DS As Dat aSet

Di m MyConnection As Sql Connecti on

D m WyConmand As Sql Dat aAdapt er

Di m Sel ect Conmand As String = "select * fromusers where username = @sernane"

MyConmmand. Sel ect Command. Par anet er s. Add(New Sqgl Par anet er (" @iser name", Sql DbType. NVar Char, 20))
MyCommand. Sel ect Cormand. Par anet er s(" @ser nane") . Val ue = User NaneFi el d. Val ue

/1 C# exanpl e

String selectCnmd = "select * from Authors where state = @usernanme";

Sql Connection myConnection = new Sgl Connection("server=...");

Sql Dat aAdapt er myConmand = new Sql Dat aAdapt er (sel ect Cnd, nyConnecti on);

nyCommand. Sel ect Command. Par anet er s. Add(new Sqgl Par anet er (" @iser nane”, Sql DbType. NVar Char, 20));
nyCommand. Sel ect Cormand. Par anet er s[" @ser nane"] . Val ue = User NaneFi el d. Val ue;

[2] You can add input validation to Web Forms pages by using validation controls. Validation controls provide an easy-to-use mechanism for all
common types of standard validation - for example, testing for valid dates or values within a range - plus ways to provide custom-written validation.
In addition, validation controls allow you to completely customize how error information is displayed to the user. Validation controls can be used
with any controls that are processed in a Web Forms page's class file, including both HTML and Web server controls.

In order to make sure user input contains only valid values, you can use one of the following validation controls:

a. "RangeValidator": checks that a user's entry (value) is between specified lower and upper boundaries. You can check ranges within pairs
of numbers, alphabetic characters, and dates.

b. "RegularExpressionValidator": checks that the entry matches a pattern defined by a regular expression. This type of validation allows you to
check for predictable sequences of characters, such as those in social security numbers, e-mail addresses, telephone numbers, postal
codes, and so on.

Important note: validation controls do not block user input or change the flow of page processing; they only set an error state, and produce error
messages. It is the programmer's responsibility to test the state of the controls in the code before performing further application-specific actions.

There are two ways to check for user input validity:
1. Testing for a general error state:

In your code, test the page's IsValid property. This property rolls up the values of the IsValid properties of all the validation controls on the page
(using a logical AND). If one of the validation controls is set to invalid, the page's property will return false.

2. Testing for the error state of individual controls:

Loop through the page's Validators collection, which contains references to all the validation controls. You can then examine the IsValid property of
each validation control.

J2EE

** Prepared Statements:

There are 3 possible ways to protect your application against SQL injection, i.e. malicious tampering of SQL parameters. Instead of dynamically

3/4/2013 16

building SQL statements, use:

[1] PreparedStatement, which is precompiled and stored in a pool of PreparedStatement objects. PreparedStatement defines setters to register
input parameters that are compatible with the supported JDBC SQL data types. For example, setString should be used for input parameters of type
VARCHAR or LONGVARCHAR (refer to the Java API for further details). This way of setting input parameters prevents an attacker from manipulating
the SQL statement through injection of bad characters, such as apostrophe.

Example of how to use a PreparedStatement in J2EE:

/'l J2EE PreparedStatenenet Exanple
Il Get a connection to the database
Connecti on myConnecti on;
if (isDataSourceEnabled()) {
/1 using the DataSource to get a managed connection
Context ctx = new Initial Context();
nyConnection = ((DataSource)ctx. | ookup(datasourceNane)).get Connecti on(dbUser Nane, dbPassword);
} else {
try {
/1 using the DriverManager to get a JDBC connection
d ass. f or Nane(j dbcDri ver O assPat h) ;
nyConnection = DriverManager. get Connecti on(j dbcURL, dbUser Name, dbPassword);
} catch (Q assNot FoundException e) {

}
}
try {
Prepar edSt at ement nyStatenent = myConnecti on. prepareStatement ("sel ect * from users where usernane = ?");

nyStatement.setString(1, userNameField);
Resul t Set rs = nyStatenent.executeQuery();

rs.close();
} catch (SQLException sql Exception) {

} finally {
nySt at ement . cl ose();
nyConnection. cl ose();

[2] CallableStatement, which extends PreparedStatement to execute database SQL stored procedures. This class inherits input setters from
PreparedStatement (see [1] above).

The following example assumes that this database stored procedure has been created:

CREATE PROCEDURE select_user (@username varchar(20))
AS SELECT * FROM USERS WHERE USERNAME = @username;

Example of how to use a CallableStatement in J2EE to execute the above stored procedure:

Il J2EE PreparedSt at emenet Exanpl e
Il Get a connection to the database
Connection myConnecti on;
if (isDataSourceEnabled()) {
/'l using the DataSource to get a managed connection
Context ctx = new Initial Context();
nyConnection = ((DataSource)ctx. | ookup(datasourceNane)).get Connecti on(dbUser Nane, dbPassword);
} else {
try {
/1 using the DriverManager to get a JDBC connection
C ass. for Nane(j dbcDri ver O assPat h) ;
nyConnection = DriverManager . get Connecti on(j dbcURL, dbUser Name, dbPassword);
} catch (O assNot FoundException e) {

}
}
try {
PreparedSt at ement nyStatenent = myConnection. prepareCal | ("{?= call select_user ?,?}");

nyStatement.set String(1, userNameField);
nySt at enent . regi st er Qut Paraneter (1, Types. VARCHAR);

3/4/2013 17

Resul t Set rs = nyStatenent. execut eQuery();

rs.close();
} catch (SQLException sql Exception) {
} finally {

nySt at ement . cl ose();

nyConnection. cl ose();

[3] Entity Bean, which represents an EJB business object in a persistent storage mechanism. There are two types of entity beans: bean-managed
and container-managed. With bean-managed persistence, the developer is responsible of writing the SQL code to access the database (refer to
sections [1] and [2] above). With container-managed persistence, the EJB container automatically generates the SQL code. As a result, the
container is responsible of preventing malicious attempts to tamper with the generated SQL code.

Example of how to use an Entity Bean in J2EE:

/1 J2EE EJB Exanpl e

try {
/1 1 ookup the User hone interface
User Hone user Home = (User Hone) cont ext . | ookup(User. cl ass);
/'l find the User renpte interface
User = user Hone. findByPri maryKey(new User Key(user NaneFi el d)) ;

} catch (Exception e) {

}

RECOMMENDED JAVA TOOLS
N/A

REFERENCES
http://java.sun.com/j2se/1.4.1/docs/api/javal/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.1/docs/apil/java/sqgl/CallableStatement.html

** Input Data Validation:

While data validations may be provided as a user convenience on the client-tier, data validation must be performed on the server-tier using
Servlets. Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.

A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field

[2] Field data type (all HTTP request parameters are Strings by default)

[3] Field length

[4] Field range

[5] Field options

[6] Field pattern

[7] Cookie values

[8] HTTP Response

A good practice is to implement the above routine as static methods in a "Validator" utility class. The following sections describe an example
validator class.

[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.

Example of how to validate required fields:

/1 Java exanple to validate required fields
public Cass Validator {

3/4/2013 18

http://java.sun.com/j2se/1.4.1/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.1/docs/api/java/sql/CallableStatement.html

public static bool ean validateRequired(String value) {
bool ean isFieldvalid = fal se;
if (value !'= null && value.trin().length() > 0) {
isFieldvalid = true;
}

return isFieldvalid;

}

String fieldValue = request. getParaneter("fiel dNane");
if (Validator.validateRequired(fieldvalue)) {
Il fieldvalue is valid, continue processing request

[2] Field data type

In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type. Use the Java primitive wrapper classes to check if the field value can be
safely converted to the desired primitive data type.

Example of how to validate a numeric field (type int):

/1 Java exanple to validate that a field is an int nunber
public Cass Validator {

public static bool ean validatelnt(String value) {
bool ean isFieldvalid = fal se;
try {
I nt eger . par sel nt (val ue);
isFieldvalid = true;
} catch (Exception e) {
isFieldvalid = fal se;
}

return isFieldvalid;

}

Il check if the HTTP request paraneter is of type int
String fieldValue = request. getParaneter ("fiel dNane");
if (Validator.validatelnt(fieldVvalue)) {

Il fieldvalue is valid, continue processing request

A good practice is to convert all HTTP request parameters to their respective data types. For example, the developer should store the "integerValue"
of a request parameter in a request attribute and use it as shown in the following example:

/| Exanple to convert the HTTP request paraneter to a primtive wapper data type
/1 and store this value in a request attribute for further processing
String fieldValue = request.getParaneter("fiel dName");
if (Validator.validatelnt(fieldValue)) {
/1 convert fieldValue to an Integer
I nteger integerValue = Integer.getlnteger(fieldValue);
/] store integerValue in a request attribute
request.setAttribute("fiel dName", integerValue);

}

/'l Use the request attribute for further processing
I nteger integerValue = (Integer)request.getAttribute("fiel dName");

3/4/2013 19

The primary Java data types that the application should handle:
- Byte

- Short

- Integer

-Long

- Float

- Double

- Date

[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.

Example to validate that the length of the userName field is between 8 and 20 characters:

/1l Exanple to validate the field length
public Cass Validator {

public static bool ean validateLength(String value, int minLength, int naxLength) {
String validatedVal ue = val ue;
if (!validateRequired(value)) {
val i dat edval ue = "";

}
return (validatedVal ue.length() >= minLength &&
val i dat edVval ue. | engt h() <= maxLength);

}

String userName = request. get Parameter ("user Nane");
if (Validator.validateRequired(userName)) {
if (Validator.validatelLength(userNane, 8, 20)) {
/| userName is valid, continue further processing

[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.

Example to validate that the input numberOfChoices is between 10 and 20:

/1 Exanple to validate the field range
public Cass Validator {

public static bool ean validateRange(int value, int mn, int max) {
return (value >= mn && val ue <= max);

}
}

String fiel dvalue = request. get Paranet er (" nunber O Choi ces") ;
if (Validator.validateRequired(fieldValue)) {
if (Validator.validatelnt(fieldValue)) {
int nunmber O Choi ces = Integer. parselnt(fieldVvalue);
if (Validator.validateRange(nunber O Choi ces, 10, 20)) {
/'l number Of Choi ces is valid, continue processing request

[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-side
validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option value.

3/4/2013 20

Always validate the selected user value against the allowed options as defined by the functional requirements.

Example to validate the user selection against a list of allowed options:

/'l Exanple to validate user selection against a list of options
public Cass Validator {

public static bool ean validateOption(bject[] options, Object value) {

bool ean isValidVal ue = false;
try {

List list = Arrays. asLi st(options);

if (list !'=null) {

isValidValue = |ist.contains(val ue);

}
} catch (Exception e) {
}

return isValidval ue;

}

/1 Alowed options
String[] options = {"optionl", "option2", "option3");
Il Verify that the user selection is one of the allowed options
String userSel ection = request.getParaneter("userSel ection");
if (Validator.validateOption(options, userSelection)) {
/1 valid user selection, continue processing request

[6] Field pattern

Always check that the user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:

Ala-zA-Z0-9]*$

Java 1.3 or earlier versions do not include any regular expression packages. Apache Regular Expression Package (see Resources below) is
recommended for use with Java 1.3 to resolve this lack of support. Example to perform regular expression validation:

/'l Exanple to validate that a given value matches a specified pattern
/1 using the Apache regul ar expression package

inport org.apache. regexp. RE;

inport org. apache. regexp. RESynt axExcepti on;

public Cass Validator {

public static bool ean matchPattern(String value, String expression) {
bool ean match = fal se;
if (validateRequired(expression)) {
RE r = new RE(expression);
match = r. match(val ue);
}

return match;

}

Il Verify that the userNane request parameter is al pha-nuneric
String userName = request. get Paramet er ("user Nane");
if (Validator.mtchPattern(userName, "~[a-zA-Z0-9]*$")) {

/1 userNanme is valid, continue processing request

Java 1.4 introduced a new regular expression package (java.util.regex). Here is a modified version of Validator.matchPattern using the new Java
1.4 regular expression package:

3/4/2013

/1 Exanple to validate that a given value matches a specified pattern
Il using the Java 1.4 regul ar expression package

inport java.util.regex.Pattern;

inport java.util.regexe. Matcher;

public Cass Validator {

public static bool ean matchPattern(String value, String expression) {
bool ean match = fal se;
if (validateRequired(expression)) {
match = Pattern. mat ches(expression, value);

}

return match;

[7] Cookie value
Use the javax.servlet.http.Cookie object to validate the cookie value. The same validation rules (described above) apply to cookie values depending
on the application requirements, e.g. validate a required value, validate length, etc.

Example to validate a required cookie value:

/] Exanple to validate a required cookie val ue
Il First retrieve all available cookies submtted in the HTTP request
Cooki e[] cookies = request . get Cooki es();
if (cookies !'= null) {
/1 find the "user" cookie
for (int i=0; i<cookies.length; ++) {
if (cookies[i].getName().equals("user")) {
/1 validate the cookie val ue
if (Validator.validateRequired(cookies[i].getValue()) {
/1 valid cookie value, continue processing request

[8] HTTP Response

[8-1] Filter user input

To guard the application against cross-site scripting, sanitize HTML by converting sensitive characters to their corresponding character entities.
These are the HTML sensitive characters:

<>""%;)(&+

Example to filter a specified string by converting sensitive characters to their corresponding character entities:

/'l Exanple to filter sensitive data to prevent cross-site scripting
public Cass Validator {

public static String filter(String value) {
if (value == null) {
return null;
}
StringBuffer result = new StringBuffer(value.length());
for (int i=0; i<value.length(); ++) {
switch (value.charAt(i)) {
case '<':
resul t.append("&t;");
br eak;
case '>':
resul t.append(">");
br eak;
case '"':
resul t. append(""");
br eak;
case '\'':
resul t.append("'");

3/4/2013 22

br eak;

case '%:
resul t. append("%");
br eak;

case ';"':
resul t. append(" ;");
br eak;

case '(':
resul t. append(" (");
br eak;

case ')':
resul t.append(")");
br eak;

case '& :
resul t. append("&np;");
br eak;

case '+':
resul t.append("+");
br eak;

defaul t:
resul t.append(val ue. char At (i));
br eak;

}

return result;

}

/1l Filter the HTTP response using Validator.filter
PrintWiter out = response.getWiter();

/1 set output response
out.wite(Validator.filter(response));
out.close();

The Java Servlet API 2.3 introduced Filters, which supports the interception and transformation of HTTP requests or responses.

Example of using a Servlet Filter to sanitize the response using Validator filter:

/1 Exanple to filter all sensitive characters in the HTTP response using a Java Filter.
/'l This exanple is for illustration purposes since it will filter all content in the response, including HTM. tags!
public class SensitiveCharsFilter inplements Filter {

public void doFilter(ServletRequest request,
Servl et Response response,
Fi | ter Chain chain)
throws | OException, ServletException {
PrintWiter out = response.getWiter();
ResponseW apper wrapper = new ResponseW apper ((Htt pServl et Response) r esponse) ;
chai n. doFi | ter(request, w apper);
CharArrayWiter caw = new CharArrayWiter();
caw. wite(Validator.filter(wapper.toString()));
response. set Cont ent Type(“text/htni");
response. set Cont ent Lengt h(caw. toString().length());
out.wite(caw toString());
out.close();

public class Char ResponseW apper extends HttpServl et ResponseW apper {
private CharArrayWiter output;
public String toString() {
return output.toString();
}
publ i ¢ Char ResponseW apper (Ht t pSer vl et Response response) {
super (response) ;
output = new CharArrayWiter();
}
public PrintWiter getWiter(){
return new PrintWiter(output);

}

3/4/2013

[8-2] Secure the cookie
When storing sensitive data in a cookie, make sure to set the secure flag of the cookie in the HTTP response, using Cookie.setSecure(boolean
flag) to instruct the browser to send the cookie using a secure protocol, such as HTTPS or SSL.

Example to secure the "user" cookie:

/'l Exanple to secure a cookie, i.e. instruct the browser to
Il send the cookie using a secure protocol

Cooki e cookie = new Cooki e("user", "sensitive");

cooki e. set Secure(true);

response. addCooki e(cooki e) ;

RECOMMENDED JAVA TOOLS

The two main Java frameworks for server-side validation are:

[1] Jakarta Commons Validator (integrated with Struts 1.1)

The Jakarta Commons Validator is a powerful framework that implements all the above data validation requirements. These rules are configured
in an XML file that defines input validation rules for form fields. Struts supports output filtering of dangerous characters in the [8] HTTP Response by
default on all data written using the Struts 'bean:write' tag. This filtering may be disabled by setting the 'filter=false' flag.

Struts defines the following basic input validators, but custom validators may also be defined:

required: succeeds if the field contains any characters other than white space.

mask: succeeds if the value matches the regular expression given by the mask attribute.

range: succeeds if the value is within the values given by the min and max attributes ((value >= min) & (value <= max)).
maxLength: succeeds if the field is length is less than or equal to the max attribute.

minLength: succeeds if the field is length is greater than or equal to the min attribute.

byte, short, integer, long, float, double: succeeds if the value can be converted to the corresponding primitive.

date: succeeds if the value represents a valid date. A date pattern may be provided.

creditCard: succeeds if the value could be a valid credit card number.

e-mail: succeeds if the value could be a valid e-mail address.

Example to validate the userName field of a loginForm using Struts Validator:

<formvalidation>
<gl obal >

<val i dator nane="required"
cl assname="or g. apache. struts. val i dat or. Fi el dChecks"
net hod="val i dat eRequi red"
nmeg="errors.required">

</val i dat or >

<val i dat or nanme="mask"
cl assnanme="or g. apache. struts. val i dat or. Fi el dChecks"
met hod="val i dat eMask"
nmsg="errors.invalid">

</val i dat or>

</ gl obal >
<f or mset >
<f orm nane="1 ogi nFor ni' >
<l-- userName is required and is al pha-nuneric case insensitive -->
<field property="userNane" depends="required, mask">
<!-- nessage resource key to display if validation fails -->
<nsg nanme="nask" key="I|ogin. user Nane. masknmsg"/>
<arg0 key="Iogi n. user Nane. di spl aynane"/>
<var>
<var - nane>nmask</ var - nane>
<var - val ue>"[a- zA- Z0- 9] * $</ var - val ue>
</ var>
</field>

</fornme
</ fornset>
</formvalidation>

3/4/2013 24

[2] JavaServer Faces Technology

JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent Ul components, manage their state, handle events and input validation.

The JavaServer Faces APl implements the following basic validators, but custom validators may be defined:
validate_doublerange: registers a DoubleRangeValidator on a component

validate_length: registers a LengthValidator on a component

validate_longrange: registers a LongRangeValidator on a component

validate_required: registers a RequiredValidator on a component

validate_stringrange: registers a StringRangeValidator on a component

validator: registers a custom Validator on a component

The JavaServer Faces API defines the following Ullnput and UIOutput Renderers (Tags):

input_date: accepts a java.util.Date formatted with a java.text.Date instance

output_date: displays a java.util.Date formatted with a java.text.Date instance

input_datetime: accepts a java.util.Date formatted with a java.text.DateTime instance

output_datetime: displays a java.util. Date formatted with a java.text.DateTime instance

input_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text. NumberFormat
output_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text. NumberFormat
input_text: accepts a text string of one line.

output_text: displays a text string of one line.

input_time: accepts a java.util.Date, formatted with a java.text.DateFormat time instance

output_time: displays a java.util.Date, formatted with a java.text.DateFormat time instance

input_hidden: allows a page author to include a hidden variable in a page

input_secret: accepts one line of text with no spaces and displays it as a set of asterisks as it is typed

input_textarea: accepts multiple lines of text

output_errors: displays error messages for an entire page or error messages associated with a specified client identifier
output_label: displays a nested component as a label for a specified input field

output_message: displays a localized message

Example to validate the userName field of a loginForm using JavaServer Faces:

<Y@taglib uri="http://java.sun.confjsf/htm" prefix="h" %
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f" %

<j sp: useBean i d="User Bean"
cl ass="myAppl i cation. User Bean" scope="session" />
<f:use_faces>
<h: f orm f or mMNane="1 ogi nFor ni* >
<h:input _text id="userNane" size="20" nodel Ref er ence="User Bean. user Nane" >
<f:validate_required/ >
<f:validate_|l ength nmininune"8" maxi num="20"/>
</ h:input_text>
<I-- display errors if present -->
<h: out put _errors id="1ogi nErrors" clientld="user Name"/>
<h: conmand_but ton i d="submi t" | abel ="Subm t" commandNane="subm t" /><p>
</ h: form
</f:use_faces>

REFERENCES

Java API11.3 -
http://java.sun.com/j2se/1.3/docs/api/

Java APl 1.4 -
http://java.sun.com/j2se/1.4/docs/api/

Java Serviet APl 2.3 -
http://java.sun.com/products/servlet/2.3/javadoc/
Java Regular Expression Package -
http://jakarta.apache.org/regexp/

Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://java.sun.com/j2ee/javaserverfaces/

** Error Handling:

Many J2EE web application architectures follow the Model View Controller (MVC) pattern. In this pattern a Servlet acts as a Controller. A Servlet

3/4/2013

25

http://java.sun.com/j2se/1.3/docs/api/
http://java.sun.com/j2se/1.4/docs/api/
http://java.sun.com/products/servlet/2.3/javadoc/
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://java.sun.com/j2ee/javaserverfaces/

delegates the application processing to a JavaBean such as an EJB Session Bean (the Model). The Servlet then forwards the request to a JSP
(View) to render the processing results. Servlets should check all input, output, return codes, error codes and known exceptions to ensure that the
expected processing actually occurred.

While data validation protects applications against malicious data tampering, a sound error handling strategy is necessary to prevent the
application from inadvertently disclosing internal error messages such as exception stack traces. A good error handling strategy addresses the
following items:

[1] Defining Errors
[2] Reporting Errors
[3] Rendering Errors
[4] Error Mapping

[1] Defining Errors

Hard-coded error messages in the application layer (e.g. Servlets) should be avoided. Instead, the application should use error keys that map to
known application failures. A good practice is to define error keys that map to validation rules for HTML form fields or other bean properties. For
example, if the "user_name" field is required, is alphanumeric, and must be unique in the database, then the following error keys should be
defined:

(a) ERROR_USERNAME_REQUIRED: this error key is used to display a message notifying the user that the "user_name" field is required;

(b) ERROR_USERNAME_ALPHANUMERIC: this error key is used to display a message notifying the user that the "user_name" field should be
alphanumeric;

(c) ERROR_USERNAME_DUPLICATE: this error key is used to display a message notifying the user that the "user_name" value is a duplicate in
the database;

(d) ERROR_USERNAME_INVALID: this error key is used to display a generic message notifying the user that the "user_name" value is invalid;

A good practice is to define the following framework Java classes which are used to store and report application errors:

- ErrorKeys: defines all error keys

/] Exanple: ErrorKeys defining the follow ng error keys:

/1 - ERROR_USERNAME_REQUI RED

I - ERROR_USERNANE_ALPHANUMVERI C
/1 - ERROR_USERNAVE_DUPLI CATE
/1 - ERROR_USERNAME_| NVALI D

I o

public O ass ErrorKeys {
public static final String ERROR_USERNAME_REQUI RED = "error. usernane. required";
public static final String ERROR_USERNAME_ALPHANUMERI C = "error. user nane. al phanuneric";
public static final String ERROR_USERNAME DUPLI CATE = "error.usernane. duplicate";
public static final String ERROR_USERNAME | NVALID = "error. usernane.invalid";

- Error: encapsulates an individual error

/1 Exanple: Error encapsul ates an error key.
/] Error is serializable to support code executing in multiple JVMs.
public Cass Error inplenents Serializable {
/1 Constructor given a specified error key
public Error(String key) {
this(key, null);
}
/1 Constructor given a specified error key and array of placehol der objects
public Error(String key, Object[] values) {
this. key = key;
this.val ues = val ues;
}
/1 Returns the error key
public String getKey() {
return this. key;
}
/1 Returns the placehol der val ues
public Object[] getValues() {
return this. val ues;
}
private String key = null;
private Qoject[] values = null;

3/4/2013 26

- Errors: encapsulates a Collection of errors

/| Exanple: Errors encapsul ates the Error objects being reported to the presentation |ayer.
Il Errors are stored in a HashMap where the key is the bean property nanme and value is an
/1 ArrayList of Error objects.
public Class Errors inplenents Serializable {
/1 Adds an Error object to the Collection of errors for the specified bean property.
public void addError(String property, Error error) {
Arraylist propertyErrors = (ArrayList)errors.get(property);
if (propertyErrors == null) {
propertyErrors = new Arraylist();
errors. put (property, propertyErrors);
}
propertyErrors. put(error);
}
/1 Returns true if there are any errors
public bool ean hasErrors() {
return (errors.size > 0);
}
/1 Returns the Errors for the specified property
public ArrayList getErrors(String property) {
return (ArraylList)errors. get(property);
}
private HashMap errors = new HashMap();

Using the above framework classes, here is an example to process validation errors of the "user_name" field:

/1l Exanple to process validation errors of the "user_nane" field.
Errors errors = new Errors();
String userName = request.get Paraneter("user_nane");
/1 (a) Required validation rule
if (!Validator.validateRequired(userNane)) {
errors. addError ("user_name", new Error (ErrorKeys. ERROR_ USERNAME_REQUI RED)) ;
} /1 (b) A pha-nuneric validation rule
else if (!Validator.matchPattern(userNane, "~[a-zA-Z0-9]*$")) {
errors. addError ("user_nane", new Error(ErrorKeys. ERROR_USERNAME_ALPHANUMERI Q)) ;

}
el se
{
/1 (c) Duplicate check validation rule
/1 We assune that there is an existing UserValidationEJB session bean that inplenents
/1 a checklfDuplicate() nethod to verify if the user already exists in the database.
try {
if (UserValidationEJB. checklfDuplicate(userNane)) {
errors. addError ("user _nane", new Error(ErrorKeys. ERROR_USERNAVE_DUPLI CATE)) ;
}
} catch (RenoteException e) {
/'l 1og the error
l ogger.error("Coul d not validate user for specified userNane: " + userNane);
errors. addError ("user_nane", new Error (ErrorKeys. ERROR_ USERNAVE_DUPLI CATE) ;
}
}

/] set the errors object in a request attribute called "errors”
request.setAttribute("errors", errors);

[2] Reporting Errors

There are two ways to report web-tier application errors:
(a) Servlet Error Mechanism

(b) JSP Error Mechanism

3/4/2013

27

[2-a] Servlet Error Mechanism

A Servlet may report errors by:

- forwarding to the input JSP (having already stored the errors in a request attribute), OR
- calling response.sendError with an HTTP error code argument, OR

- throwing an exception

It is good practice to process all known application errors (as described in section [1]), store them in a request attribute, and forward to the input
JSP. The input JSP should display the error messages and prompt the user to re-enter the data. The following example illustrates how to forward
to an input JSP (userlnput.jsp):

/1 Exanple to forward to the userlnput.jsp follow ng user validation errors
Request Di spat cher rd = get Servl et Cont ext () . get Request Di spat cher (“/user/user|nput.jsp");
if (rd !=null) {

rd. forward(request, response);

}

If the Servlet cannot forward to a known JSP page, the second option is to report an error using the response.sendError method with
HttpServietResponse.SC_INTERNAL_SERVER_ERROR (status code 500) as argument. Refer to the javadoc of
javax.servlet.http.HttpServletResponse for more details on the various HTTP status codes. Example to return a HTTP error:

/1l Exanple to return a HTTP error code
Request Di spat cher rd = get Servl et Cont ext (). get Request Di spat cher ("/user/userlnput.jsp");
if (rd ==null) {
/] messages is a resource bundle with all nessage keys and val ues
response. sendError (Ht t pSer vl et Response. SC_| NTERNAL_SERVER_ERROR,
messages. get Message(Er r or Keys. ERROR_USERNAVE_| NVALI D)) ;

As a last resort, Servlets can throw an exception, which must be a subclass of one of the following classes:
- RuntimeException

- ServletException

- IOException

[2-b] JSP Error Mechanism
JSP pages provide a mechanism to handle runtime exceptions by defining an errorPage directive as shown in the following example:

<%@ page errorPage="/errors/userValidation.jsp" %

Uncaught JSP exceptions are forwarded to the specified errorPage, and the original exception is set in a request parameter called
javax.servlet.jsp.jspException. The error page must include a isErrorPage directive as shown below:

<%@ page i sErrorPage="true" %

The isErrorPage directive causes the "exception" variable to be initialized to the exception object being thrown.

[3] Rendering Errors
The J2SE Internationalization APIs provide utility classes for externalizing application resources and formatting messages including:

(a) Resource Bundles

3/4/2013 28

(b) Message Formatting

[3-a] Resource Bundles

Resource bundles support internationalization by separating localized data from the source code that uses it. Each resource bundle stores a map

of key/value pairs for a specific locale.

It is common to use or extend java.util.PropertyResourceBundle, which stores the content in an external properties file as shown in the following

example:

Error Messages. properties

required user nanme error nessage

error.usernane. required=User nane field is required

invalid user nane format

error.usernane. al phanuneri c=User name nust be al phanuneric

duplicate user name error nmessage

error.username. dupli cate=User nane {0} already exists, please choose another one

Multiple resources can be defined to support different locales (hence the name resource bundle). For example, ErrorMessages_fr.properties can
be defined to support the French member of the bundle family. If the resource member of the requested locale does not exist, the default member
is used. In the above example, the default resource is ErrorMessages.properties. Depending on the user's locale, the application (JSP or Servlet)

retrieves content from the appropriate resource.

[3-b] Message Formatting

The J2SE standard class java.util. MessageFormat provides a generic way to create messages with replacement placeholders. A MessageFormat

object contains a pattern string with embedded format specifiers as shown below:

Il Exanple to show how to format a message using pl acehol der paraneters
String pattern = "User nane {0} already exists, please choose another one";
String userNane = request. get Paramet er ("user_nane");

Cbject[] args = new Object[1];

args[0] = user Name;

String message = MessageFornat.format(pattern, args);

Here is a more comprehensive example to render error messages using ResourceBundle and MessageFormat:

/1 Exanple to render an error nessage froma |ocalized ErrorMessages resource (properties file)
Il Wility class to retrieve |ocal e-specific error nessages
public Cass ErrorMessageResource {
/] Returns the error nessage for the specified error key in the environnent |ocale
public String getErrorMessage(String errorKey) {
return get Error Message(errorKey, defaultlLocale);
}
Il Returns the error message for the specified error key in the specified |ocale
public String getErrorMessage(String errorKey, Locale |ocale) {
return getErrorMessage(errorKey, null, locale);
}
/] Returns a formatted error nessage for the specified error key in the specified | ocale
public String getErrorMessage(String errorKey, Object[] args, Locale |ocale) {
Il Cet localized ErrorMessageResource
Resour ceBundl e error MessageResour ce = Resour ceBundl e. get Bundl e("Error Messages", |ocale);
/1 Get localized error nessage
String errorMessage = error MessageResour ce. get String(errorKey);
if (args !'=null) {
/1 Format the message using the specified placehol ders args
return MessageFor mat . f or mat (error Message, args);
} else {
return errorMessage;

}

/'l default environnent |ocale
private Local e defaul tLocal e = Local e. get Def aul t Local e();

3/4/2013

29

}

/| Get the user's locale
Local e userLocal e = request. getLocal e();
/1l Check if there were any validation errors
Errors errors = (Errors)request.getAttribute("errors");
if (errors !'= null &% errors. hasErrors()) {
/] iterate through errors and output error nessages corresponding to the "user_name" property
ArraylLi st userNanmeErrors = errors. getErrors("user_nane");
Listlterator iterator = userNaneErrors.iterator();
while (iterator.hasNext()) {
Il Cet the next error object
Error error = (Error)iterator.next();
String errorMessage = Error MessageResour ce. get Error Message(error. get Key(), userLocal e);
output.wite(errorMessage + "\r\n");

It is recommended to define a custom JSP tag, e.g. displayErrors, to iterate through and render error messages as shown in the above example.

[4] Error Mapping

Normally, the Servlet Container will return a default error page corresponding to either the response status code or the exception. A mapping
between the status code or the exception and a web resource may be specified using custom error pages. It is a good practice to develop static
error pages that do not disclose internal error states (by default, most Servlet containers will report internal error messages). This mapping is
configured in the Web Deployment Descriptor (web.xml) as specified in the following example:

<!-- Mapping of HTTP error codes and application exceptions to error pages -->
<error-page>
<exception-type>User Val i dati onExcepti on</ exception-type>
<l ocation>/errors/validationError. htm </error-page>
<[error-page>
<error-page>
<error-code>500</ excepti on-type>
<l ocation>/errors/internal Error.htnl </error-page>
<[error-page>
<error-page>

<[error-page>

RECOMMENDED JAVA TOOLS

The two main Java frameworks for server-side validation are:

[1] Jakarta Commons Validator (integrated with Struts 1.1)

The Jakarta Commons Validator is a Java framework that defines the error handling mechanism as described above. Validation rules are
configured in an XML file that defines input validation rules for form fields and the corresponding validation error keys. Struts provides
internationalization support to build localized applications using resource bundles and message formatting.

Example to validate the userName field of a loginForm using Struts Validator:

<formvalidation>
<gl obal >

<val i dat or name="required"
cl assnane="or g. apache. struts. val i dat or. Fi el dChecks"
nmet hod="val i dat eRequi r ed"
meg="errors.required">

</val i dat or>

<val i dat or nanme="mask"
cl assnane="or g. apache. struts. val i dat or. Fi el dChecks"
met hod="val i dat eMask"
msg="errors.invalid">

</val i dat or>

</ gl obal >

<f or mset >
<f orm nane="1 ogi nFor ni' >

3/4/2013

30

<l-- userName is required and is al pha-nuneric case insensitive -->

<field property="userNane" depends="required, mask">

<I-- nessage resource key to display if validation fails -->

<nsg name="nask" key="Iogi n. user Nane. masknsg" />
<arg0 key="I|ogi n. user Nane. di spl ayname"/ >
<var >
<var - name>nask</ var - name>
<var - val ue>"[a- zA- Z0- 9] *$</ var - val ue>
</ var>
</field>

</form

</ fornset >
</formyvalidation>

The Struts JSP tag library defines the "errors" tag that conditionally displays a set of accumulated error messages as shown in the following

example:

<%@ page | anguage="java" %

<Y@taglib uri="/WEB-INF/struts-htni.tld" prefix="htm" %
<Y@taglib uri="/WEB-INF/ struts-bean.tld" prefix="bean" %
<htm :htm >

<head>
<body>

<htni:formaction="/1ogon. do">
<tabl e border="0" wi dt h="100% >

<tr>

<th align="right">

<htm :errors property="usernane"/>

<bean: message key="pronpt. usernane"/>
</th>
<td align="left">

<htm :text property="usernanme" size="16"/>
</td>

</tr>
<tr>

<td

align="right">

<htn : subm t ><bean: mnessage key="button. subm t"/></htm : subm t >

</td>

<td

align="right">

<htn : reset ><bean: nessage key="button.reset"/></htm :reset>

</td>

</tr>
</tabl e>
</htm :form

</ body>

</htm :htnl>

[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent Ul components, manage their state, handle events, validate input, and
support internationalization.

The JavaServer Faces API defines the "output_errors" UlOutput Renderer, which displays error messages for an entire page or error messages

associated with a specified client identifier.

Example to validate the userName field of a loginForm using JavaServer Faces:

<Y@taglib uri="http://java.sun.confjsf/htm" prefix="h" %
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f" %

<j sp: useBean i d="User Bean"
cl ass="nyAppl i cation. User Bean" scope="session" />
<f:use_faces>
<h: f orm f or MNane="1 ogi nFor nt* >

<h:input _text id="userNane" size="20" nodel Ref erence="User Bean. user Narme" >

</ h:

3/4/2013

<f:validate_required/ >
<f:validate_|l ength nini nun"8" maxi mum="20"/>
i nput _text>

31

<I-- display errors if present -->
<h: output _errors id="loginErrors" clientld="userNane"/>
<h: conmand_but ton i d="submi t" | abel ="Subm t" commandNane="subm t" /><p>
</ h: form
</f:use_faces>

REFERENCES

Java API11.3 -
http://java.sun.com/j2se/1.3/docs/api/

Java APl 1.4 -
http://java.sun.com/j2se/1.4/docs/api/

Java Servlet API 2.3 -
http://java.sun.com/products/serviet/2.3/javadoc/
Java Regular Expression Package -
http://jakarta.apache.org/regexp/

Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://java.sun.com/j2ee/javaserverfaces/

PHP

** Filter User Input

Before passing any data to a SQL query, it should always be properly filtered with whitelisting techniques. This cannot be over-emphasized.
Filtering user input will correct many injection flaws before they arrive at the database.

** Quote User Input

Regardless of data type, it is always a good idea to place single quotes around all user data if this is permitted by the database. MySQL allows this
formatting technique.

** Escape the Data Values

If you're using MySQL 4.3.0 or newer, you should escape all strings with mysq|_real_escape_string(). If you are using an older version of MySQL,
you should use the mysql_escape_string() function. If you are not using MySQL, you might choose to use the specific escaping function for your
particular database. If you are not aware of an escaping function, you might choose to utilize a more generic escaping function such as addslashes

0

If you're using the PEAR DB database abstraction layer, you can use the DB::quote() method or use a query placeholder like ?, which automatically
escapes the value that replaces the placeholder.

REFERENCES
http://ca3.php.net/mysql_real_escape_string
http://ca.php.net/mysql_escape_string
http://ca.php.net/addslashes
http://pear.php.net/package-info.php?package=DB

** Input Data Validation:

While data validations may be provided as a user convenience on the client-tier, data validation must always be performed on the server-tier. Client
-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.

A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field

[2] Field data type (all HTTP request parameters are Strings by default)

[3] Field length

[4] Field range

[5] Field options

[6] Field pattern

[7] Cookie values

[8] HTTP Response

3/4/2013 32

http://java.sun.com/j2se/1.3/docs/api/
http://java.sun.com/j2se/1.4/docs/api/
http://java.sun.com/products/servlet/2.3/javadoc/
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://java.sun.com/j2ee/javaserverfaces/
http://ca3.php.net/mysql_real_escape_string
http://ca.php.net/mysql_escape_string
http://ca.php.net/addslashes
http://pear.php.net/package-info.php?package=DB

A good practice is to implement a function or functions that validates each application parameter. The following sections describe some example
checking.

[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.

Example of how to validate required fields:

/| PHP exanple to validate required fields
function val i dateRequired($i nput) {

$pass = fal se;
if (strlien(trinm($input))>0){
$pass = true;

}

return $pass;

}

if (validateRequired($fieldNane)) {
/1 fieldNane is valid, continue processing request

[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type.

[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.

[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.

[5] Field options

Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-side
validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option value.
Always validate the selected user value against the allowed options as defined by the functional requirements.

[6] Field pattern

Always check that user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only allow
alpha-numeric characters, case insensitive, then use the following regular expression:

Na-zA-Z0-9]+$

[7] Cookie value

The same validation rules (described above) apply to cookie values depending on the application requirements, e.g. validate a required value,
validate length, etc.

[8] HTTP Response

[8-1] Filter user input

To guard the application against cross-site scripting, the developer should sanitize HTML by converting sensitive characters to their corresponding
character entities. These are the HTML sensitive characters:

<>" %) (&+

PHP includes some automatic sanitization utility functions, such as htmlentities():

$input = htmentities($input, ENT_QUOTES, 'UTF-8');

3/4/2013 33

In addition, in order to avoid UTF-7 variants of Cross-site Scripting, you should explicitly define the Content-Type header of the response, for
example:

<?php
header (' Content - Type: text/htnl; charset=UTF-8");
7>

[8-2] Secure the cookie

When storing sensitive data in a cookie and transporting it over SSL, make sure that you first set the secure flag of the cookie in the HTTP
response. This will instruct the browser to only use that cookie over SSL connections.

You can use the following code example, for securing the cookie:

<$php
$val ue = "sone_val ue";
$tine = time()+3600;
$path = "/application/";
$donmain = ". exanpl e. cont;
$secure = 1;
set cooki e(" Cooki eNane", $value, $tine, $path, $donmmin, $secure, TRUE);

In addition, we recommend that you use the HttpOnly flag. When the HttpOnly flag is set to TRUE the cookie will be made accessible only through
the HTTP protocol. This means that the cookie won't be accessible by scripting languages, such as JavaScript. This setting can effectively help to
reduce identity theft through XSS attacks (although it is not supported by all browsers).

The HitpOnly flag was Added in PHP 5.2.0.
REFERENCES

[1] Mitigating Cross-site Scripting With HTTP-only Cookies:
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
[2] PHP Security Consortium:

http://phpsec.org/

[3] PHP & Web Application Security Blog (Chris Shiflett):
http://shiflett.org/

M Decline malicious requests TOC

Issue Types that this task fixes

m Cross-Site Request Forgery

General

There are several mitigation techniques:

[1] Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness, or provides constructs that make it easier to avoid.
For example, use anti-CSRF packages such as the OWASP CSRFGuard -

3/4/2013 34

http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://phpsec.org/
http://shiflett.org/
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

http://www.owasp.org/index.php/Cross-Site_Request_Forgery (CSRF)_Prevention_Cheat_Sheet
Another example is the ESAPI Session Management control, which includes a component for CSRF -
http://www.owasp.org/index.php/ESAPI

[2] Ensure that your application is free of cross-site scripting issues (CWE-79), because most CSRF defenses can be bypassed using attacker-
controlled script.

[3] Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be sure that the nonce is
not predictable (CWE-330) -

http://www.cgisecurity.com/articles/csrf-fag.shtml

Note that this can be bypassed using XSS (CWE-79).

[4] Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation request to ensure that
the user intended to perform that operation.

Note that this can be bypassed using XSS (CWE-79).

[5] Use the "double-submitted cookie" method as described by Felten and Zeller:

When a user visits a site, the site should generate a pseudorandom value and set it as a cookie on the user's machine. The site should require
every form submission to include this value as both a form and a cookie value. When a POST request is sent to the site, the request should only be
considered valid if the form and cookie values are the same.

Because of same-origin policy, an attacker cannot read or modify the value stored in the cookie. To successfully submit a form on behalf of the
user, the attacker would have to correctly guess the pseudorandom value. If the pseudorandom value is cryptographically strong, this will be
prohibitively difficult.

This technique requires Javascript, so it may not work for browsers that have Javascript disabled -
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1445

Note that this can probably be bypassed using XSS (CWE-79), or when using web technologies that enable the attacker to read raw headers from
HTTP requests.

[6]1 Do not use the GET method for any request that triggers a state change.

[7] Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate functionality, because users
or proxies may have disabled sending the Referer for privacy reasons.

Note that this can be bypassed using XSS (CWE-79). An attacker could use XSS to generate a spoofed Referer, or to generate a malicious request
from a page whose Referer would be allowed.

Enforce account lockout after several failed login attempts

Issue Types that this task fixes

m Inadequate Account Lockout

General

Decide upon the number of login attempts to be allowed (usually from 3 to 5), and make sure that the account will be locked once the permitted
number of attempts is exceeded.

To avoid unnecessary support calls from genuine users who were locked out of their account and require enabling, it is possible to suspend
account activity only temporarily, and enable it after a specific period of time. Locking the account for a period of ten minutes or so is usually
sufficient to block brute force attacks.

3/4/2013 35

http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/ESAPI
http://www.cgisecurity.com/articles/csrf-faq.shtml
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1445

Advisories

Blind SQL Injection ToC

Test Type:

Application-level test

Threat Classification:
SQL Injection

Causes:
Sanitation of hazardous characters was not performed correctly on user input

Security Risks:
It is possible to view, modify or delete database entries and tables

Affected Products:

This issue may affect different types of products.

CWE:
89

References:

"Web Application Disassembly with ODBC Error Messages" (By David Litchfield)
"Using Binary Search with SQL Injection" (By Sverre H. Huseby)
Blind SQL Injection Training Module

Technical Description:

The software constructs all or part of an SQL command using externally-influenced input, but fails to neutralize elements that could modify the SQL
command when it is sent to the database.

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be interpreted
as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to insert additional statements that modify
the back-end database, possibly including execution of system commands.

For example, let's say we have an HTML page with a login form, which eventually runs the following SQL query on the database using the user
input:

SELECT * FROM accounts WHERE user name=' $user' AND passwor d=' $pass’

The two variables, $user and $pass, contain the user credentials entered by the user in the login form.
If the user has input "jsmith" as the username, and "Demo1234" as the password, the SQL query will look like this:

SELECT * FROM accounts WHERE usernanme='jsmth' AND password='Denpl1234'

But if the user input """ (a single apostrophe) as the username, and """ (a single apostrophe) as the password, the SQL query will look like this:

3/4/2013 36

http://projects.webappsec.org/SQL-Injection
http://cwe.mitre.org/data/definitions/89.html
http://www.cgisecurity.com/lib/webappdis.doc
http://shh.thathost.com/text/binary-search-sql-injection.txt
http://download.boulder.ibm.com/ibmdl/pub/software/dw/richmedia/rational/08/appscan_demos/blindsqlinjection/viewer.swf#recorded_advisory

SELECT * FROM accounts WHERE usernane=''' AND password='""

This, of course, is a malformed SQL query, and will invoke an error message, which may be returned in the HTTP response.
An error such as this informs the attacker that an SQL Injection has succeeded, which will lead the attacker to attempt further attack vectors.

Blind SQL Injection is similar of SQL Injection. The difference lies in the fact that to leverage it, the attacker does not need to look for SQL errors in
the response. Therefore, the method AppScan uses to identify it is also different.

Instead of attempting to invoke an SQL error, AppScan locates scripts that are susceptible to SQL injection, by manipulating the logic of the
application through multiple requests.

The technique calls for sending requests whose vulnerable parameter (the parameter that gets embedded in the SQL query) is modified so that
the response indicates whether the data is used in SQL query context or not. The modification involves the use of an AND Boolean expression with
the original string, which evaluates once as True and once as False. In one case, the net result should be identical to the original result (a
successful login), and in the other case, the result should be significantly different (a failed login). An OR expression which evaluates as True may
also be useful for some rare cases.

If the original data is numeric, a simpler trick can be played. Let's consider original data 123. This can be replaced with 0+123 in one request, and
with 456+123 in another. The result of the first request should be identical to the original result, whereas the result of the second request should be
different (as the number is evaluated as 579). For some cases, we still need a version of the attack described above (using AND and OR), but
without escaping from string context.

The concept behind Blind SQL Injection is that it is possible, even without receiving direct data from the database (in the form of an error message,
or leaked information), to extract data from the database, one bit at a time, or to modify the query in a malicious way. The idea is that the
application's behavior (returning responses that are identical or different to the original response) can provide a single bit of information about the
evaluated (modified) query, meaning, it's possible for the attacker to formulate an SQL Boolean expression whose evaluation (single bit) is
compromised in the form of the application behavior (identical/un-identical to the original behavior).

Unencrypted Login Request Toc

Test Type:

Application-level test

Threat Classification:
Application Privacy Tests

Causes:
Sensitive input fields such as usernames, password and credit card numbers are passed unencrypted

Security Risks:
It may be possible to steal user login information such as usernames and passwords that are sent unencrypted

Affected Products:

This issue may affect different types of products

CWE:
523

References:

Financial Privacy: The Gramm-Leach Bliley Act

Health Insurance Portability and Accountability Act (HIPAA)
Sarbanes-Oxley Act

California SB1386

3/4/2013 37

file:///C:/ProgramData/IBM/AppScan%20Standard/temp/3256/
http://cwe.mitre.org/data/definitions/523.html
http://business.ftc.gov/privacy-and-security/gramm-leach-bliley-act/
http://www.hhs.gov/ocr/hipaa/
http://www.sec.gov/spotlight/sarbanes-oxley.htm
http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html

Technical Description:

During the application test, it was detected that an unencrypted login request was sent to the server. Since some of the input fields used in a login
process (for example: usernames, passwords, e-mail addresses, social security number, etc.) are personal and sensitive, it is recommended that
they will be sent to the server over an encrypted connection (e.g. SSL).

Any information sent to the server as clear text, may be stolen and used later for identity theft or user impersonation.

In addition, several privacy regulations state that sensitive information such as user credentials will always be sent encrypted to the web site.

Cross-Site Request Forgery Toc

Test Type:

Application-level test

Threat Classification:
Cross-site Request Forgery

Causes:
Insufficient authentication method was used by the application

Security Risks:

It is possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing the hacker to
view or alter user records, and to perform transactions as that user

Affected Products:

This issue may affect different types of products.

CWE:
352

References:

Cross-site request forgery wiki page
"JavaScript Hijacking" by Fortify

Cross-Site Request Forgery Training Module

Technical Description:

Even well-formed, valid, consistent requests may have been sent without the user's knowledge. Web applications should therefore examine all
requests for signs that they are not legitimate. The result of this test indicates that the application being scanned does not do this.

The severity of this vulnerability depends on the functionality of the affected application. For example, a CSRF attack on a search page is less
severe than a CSRF attack on a money-transfer or profile-update page.

When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally sent, then it might be
possible for an attacker to trick a client into making an unintentional request to the web server which will be treated as an authentic request. This
can be done via a URL, image load, XMLHttpRequest, etc., and can result in exposure of data or unintended code execution.

If the user is currently logged-in to the victim site, the request will automatically use the user's credentials including session cookies, IP address,
and other browser authentication methods. Using this method, the attacker forges the victim's identity and submits actions on his or her behalf.

Inadequate Account Lockout ToC

3/4/2013 38

http://projects.webappsec.org/Cross-Site-Request-Forgery
http://cwe.mitre.org/data/definitions/352.html
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://www.net-security.org/dl/articles/JavaScript_Hijacking.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/richmedia/rational/08/appscan_demos/csrf-cbt/viewer.swf#recorded_advisory

Test Type:

Application-level test

Threat Classification:
Brute Force

Causes:
Insecure web application programming or configuration

Security Risks:
It might be possible to escalate user privileges and gain administrative permissions over the web application

Affected Products:
This issue affects several applications

CWE:
307

References:
"Blocking Brute-Force Attacks" by Mark Burnett

Technical Description:

AppScan Detected that the application does not limit the number of false login attempts.

It did so by sending 10 requests with a bad password, and then successfully logged in using the correct credentials.

Not limiting the number of false login attempts exposes the application to a brute force attack.

A brute force attack is an attempt by a malicious user to gain access to the application by sending a large number of possible passwords and/or
usernames.

Since this technique involves a large amount of login attempts, an application that does not limit the number of false login requests allowed is
vulnerable to these attacks.

Itis therefore highly recommended to restrict the number of false login attempts allowed on an account before it is locked.

Sample Exploit:
The following request illustrates a password-guessing request:

http://site/login.asp?username=EXISTING_USERNAME&password=GUESSED_PASSWORD

If the site does not lock the tested account after several false attempts, the attacker may eventually discover the account password and use it to
impersonate the account's legitimate user.

3/4/2013

39

http://projects.webappsec.org/Brute-Force
http://cwe.mitre.org/data/definitions/307.html
http://www.codeguru.com/csharp/csharp/cs_webservices/security/article.php/c7907/

